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Abstract— This paper investigates the scalability of Proximal
Policy Optimization (PPO) for coordinating unmanned surface
vehicles (USVs) in complex asymmetric warfare scenarios.
We extend prior single-agent marine navigation research by
establishing a configurable multi-agent reinforcement learning
framework, capable of supporting more than 5 USVs,
systematically evaluating performance across increasing agent
populations (1-5 USVs) and environmental complexity levels
(0-20 dynamic obstacles). Our digital twin environment integrates
Crest Ocean System and Dynamic Water Physics 2 to
simulate realistic maritime conditions. Experimental results
reveal nuanced trade-offs: while Curriculum Learning (CL)
significantly accelerates initial training, the baseline PPO
achieves higher asymptotic success rates during the training
phase. However, in final evaluations on complex multi-agent
scenarios, PPO combined with CL demonstrates superior
generalization and robustness (e.g., 89.66% mission success in
5-agent/20-obstacle configurations). This work provides critical
insights into the interplay of training efficiency, asymptotic
performance, and generalization in complex multi-agent Deep
Reinforcement Learning (DRL) tasks for autonomous swarm
systems.

Keywords— multi-agent reinforcement learning, proximal
policy optimization, unmanned surface vehicles

I. INTRODUCTION

Modern asymmetric conflicts, such as the ongoing
Russian-Ukrainian war, have underscored the strategic
importance of unmanned surface vehicles (USVs) for
maritime surveillance, force protection, and precision strike
missions [1]. While single-USV operations have proven
tactically effective [2], evolving naval doctrine now highlights
the role of coordinated USV swarms in overwhelming
traditional defenses and expanding the reach of maritime
power [3]. This evolution poses critical challenges for the
development of robust multi-agent navigation systems capable
of operating reliably in dynamic and adversarial marine
environments.

Current reinforcement learning (RL) approaches for marine
navigation remain predominantly limited to single-agent
scenarios [2], [4]. The seminal work of Luo et al. [2]
established Long Short-Term Memory (LSTM)-enhanced
Proximal Policy Optimization (PPO) as effective for
individual USV obstacle avoidance, but their evaluation
focused on static environments with only a handful of
obstacles. However, operational realities — especially for
nations responsible for defending vast maritime domains
like Brazil’s “Amazônia Azul” — demand scalable solutions
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that can coordinate multiple USVs through dense obstacle
fields, while maintaining formation and mission objectives.
This multi-agent setting poses significant challenges for deep
reinforcement learning (DRL) methods due to the exponential
growth of the state-action space [5].

This work addresses these challenges through three
primary contributions: (1) A configurable and scalable
multi-agent PPO framework, with experiments scaling up
to 10 USVs and focused analysis of 1-5 agent scenarios;
(2) Integration of high-fidelity hydrodynamic simulation
using Crest Ocean System and Dynamic Water Physics 2,
supporting realistic conditions that narrow the gap between
simulation and real-world operation [6]; and (3) A systematic
evaluation of PPO variants (vanilla, LSTM-enhanced, and
curriculum-learned) across a comprehensive 5x5 complexity
matrix of agent and obstacle configurations.

Our experimental paradigm extends Luo et al. [2]’s
methodology into multi-agent contexts while preserving their
core success metrics. In contrast to initial expectations,
our evaluation reveals that while Curriculum Learning (CL)
significantly accelerates early-stage training, baseline PPO
ultimately achieves higher asymptotic performance. Notably,
PPO+CL demonstrates stronger generalization in complex
multi-agent scenarios, underscoring the nuanced trade-offs
between sample efficiency, final performance, and robustness
in advanced DRL applications.

This research is not only an advance in autonomous
navigation, but also a step toward strengthening the
technological autonomy and maritime security of Brazil. By
equipping future USV swarms with scalable and adaptive
intelligence, this work contributes to the broader mission of
defending our national interests across the expansive Brazil’s
Maritime Domain.

The remainder of this paper is organized as follows: Section
II reviews related work in maritime DRL. Section III details
the simulation environment and PPO implementation. Section
IV presents the experimental matrix and results. Section V
discusses implications for real-world deployment, followed by
conclusions in Section VI.

II. RELATED WORK

Recent advances in DRL have significantly improved
autonomous navigation and control of USVs. Traditional
rule-based and potential field methods often lack the
adaptability required for complex and dynamic maritime
scenarios [4], [7]. DRL, particularly PPO, has shown promise
for robust obstacle avoidance and path planning in simulated
marine environments [2].
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Luo et al. [2] introduced an LSTM-enhanced PPO approach
for single-agent USV navigation, demonstrating improved
performance in environments with static and dynamic
obstacles. However, their work is limited to single-agent
scenarios and does not address the scalability of PPO to
multi-agent settings or increased environmental complexity.

Multi-agent reinforcement learning (MARL) is gaining
traction for coordinated control of multiple autonomous
systems. Yu et al. [5] highlighted that PPO, when
properly configured, can be surprisingly effective for
cooperative multi-agent tasks, although its application in
maritime domains remains underexplored. Recent works
have also emphasized the importance of realistic simulation
environments, such as those built with Unity and advanced
water physics engines, to bridge the sim-to-real gap for USV
deployments [1], [8].

Additionally, CL has been shown to improve training
efficiency and policy robustness by gradually increasing task
difficulty [9]. While some studies have explored curriculum
strategies for navigation, their integration with MARL and
PPO in maritime contexts is still limited.

In summary, prior research [2], [5], [9] has established
the effectiveness of DRL and PPO for single-agent USV
navigation, but there is a clear gap regarding their scalability
to multi-agent and high-complexity environments. This paper
addresses this gap by systematically evaluating PPO and its
variants across a matrix of agent and obstacle configurations
in a high-fidelity maritime simulation, aiming to provide new
insights into the adaptability and robustness of PPO for future
real-world USV swarm deployments.

III. METHODOLOGY

A. PPO Formulation
Our multi-agent PPO implementation builds on the clipped

objective function:

Lclip(θ) = Et

[
min

(
rtÂt, [rt]

1+ϵ
1−ϵÂt

)]
(1)

where:

rt =
πθ(at|st)
πθold(at|st)

,

[rt]
b
a = max(min(rt, b), a),

ϵ = 0.2 (clip range)

where rt =
πθ(at|st)

πθold
(at|st) represents the policy probability ratio,

and Ât denotes the generalized advantage estimate (GAE)
computed across all agents. Thus, Et denotes the expectation
over timesteps t. The clipping parameter ϵ = 0.2 constrains
policy updates to prevent destructive large steps [10].

B. Training Configuration
All PPO agents were trained with a feedforward policy

network of 3 hidden layers, each with 512 units, and Swish
activations, guided by prior DRL studies [2], [4] and adjusted
empirically for stability in our environment. Observations
were normalized during training. Unless otherwise stated,
the configuration used no memory modules, curiosity, or
curriculum. The optimizer employed a batch size of 2048,
a buffer size of 20480, and learning rate annealing from an
initial value of 3×10−4 with linear decay. Table I summarizes
the key hyperparameters.

TABLE I: DEFAULT PPO CONFIGURATION PARAMETERS

Parameter Value

Batch size 2048
Buffer size 20480
Learning rate 3× 10−4 (linear decay)
Entropy coefficient (β) 0.001 (linear decay)
Clip parameter (ϵ) 0.2
GAE lambda (λ) 0.95
Discount factor (γ) 0.995
PPO epochs per batch 3
Hidden layers 3 × 512 units
Time horizon 256
Max training steps 15 million

C. LSTM Integration

To handle partial observability in maritime environments,
we augment the policy network with LSTM layers:

ht, ct = LSTM(ot, ht−1, ct−1) (2)

where ot represents the current observation vector, ht the
hidden state, and ct the cell state. The LSTM’s gating
mechanism enables temporal credit assignment for navigation
decisions [11].

D. Curriculum Learning Strategy

Our phased training protocol follows:

C = {(na, no)k|k = 1, ...,K;na ↑, no ↑} (3)

where na denotes agent count (1-5) and no obstacle density
(0-20). The CL progresses when agents achieve a success rate
greater than 80% for 100 consecutive episodes [9].

E. Simulation Environment

The simulation environment for training the PPO agent
is developed using the Unity ML-Agents Toolkit, providing
a flexible and efficient framework for training DRL agents
in realistic maritime scenarios [12]. Unity ML-Agents
connects Unity’s powerful real-time 3D simulation to the
PyTorch-based RL training pipeline via a dedicated Python
API.

Formally, the environment is represented as a Markov
Decision Process (MDP):

E = (S,A, T ,R) ↪→ PyTorch (4)

where:
S: Observable states (e.g., heading, raycasts)
A: Actions (rudder, thrust)
T : Transition dynamics (Unity physics engine)
R: Reward signal from agent-environment interaction

The arrow (↪→) denotes integration of these MDP elements
into the PyTorch framework via the ML-Agents API. This
setup facilitates real-time data exchange for training the
agent’s policy and value function.

During each episode, Unity provides observations to the
agent, which selects an action via the PPO policy. The
action is applied in Unity, and the resulting reward and
new observation are returned. This loop continues until
termination.
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To approximate realistic maritime conditions, the
simulation incorporates the Crest Ocean Renderer configured
for moderate sea states. Wind speed was fixed at 20 km/h,
employing the default “WavesBoatWakes” wave spectrum
available in Crest’s examples and using the Crest Shape
FFT for wave synthesis. Although Crest supports extreme
conditions up to 150 km/h, the moderate settings chosen
ensure training stability and mirror commonly encountered
operational scenarios. These settings significantly enhance
realism compared to planar or idealized water models;
however, the resulting wave fields do not yet match specific
Beaufort sea states precisely, and further calibration would
be required for strict real-world equivalence.

F. Observation Space

The agent’s observation vector ot ∈ R87 combines
proprioceptive and exteroceptive inputs, structured into four
key components. Table II provides a comprehensive summary.

TABLE II: OBSERVATION SPACE COMPONENTS

Component Dimensions Description

Target
State

4 • Normalized X/Z displacement
• Heading alignment cosine (−1 to +1)
• Normalized distance scalar

Ship-State 7 • Normalized thrust, speed, acceleration
• Rudder angle (%)
• Normalized angular velocity
• Normalized pitch/roll (±90◦ → ±1)

Nearest
Neighbor

4 • Normalized relative X/Z position
• Heading alignment cosine
• Collision risk (0 to 1)

Ray
Perception

72 • 21 rays × [distance (norm), one-hot
object type (friend/target/obstacle)]

• Covers 180◦ front arc

This structured representation reduces reward engineering
overhead compared to related work [2] by shifting
complexity into the observation space, enabling greater
generalization across navigation tasks. This design enables
agents to adapt to a variety of operational scenarios without
requiring reward reengineering, thus supporting flexible
mission profiles. The standardized observation format also
simplifies deployment across heterogeneous USV platforms
by maintaining consistent input representations regardless of
vessel specifications.

G. USV Vessel Modeling

The simulated USV utilized in this study is based on
the Ukrainian maritime drone Magura V5, an unmanned
surface vehicle (USV) developed for autonomous maritime
operations [3]. Although the current simulation model does
not yet represent a verified digital twin, significant efforts
were undertaken to replicate its known maneuverability
characteristics and hydrodynamic behavior. Model
parameters, such as vessel dimensions, thrust, and other
dynamics, were carefully calibrated using publicly available
data to closely mimic the operational profile of the real-world
vessel [3]. The 3D model of the Magura V5, utilized within
the Unity simulation environment and illustred by Fig. 1, is
publicly available online [13] under the Creative Commons
Attribution license.

Fig. 1: 3D model of the Magura V5 USV [13].

Future work will focus on rigorous validation to ensure
higher fidelity in representing the vessel’s real-world
performance, potentially leading to a fully validated digital
twin suitable for real-world mission planning and training.

H. Reward Function

A well-designed reward function is essential for shaping
effective agent behavior in RL. Our reward system
combines several components to promote efficient navigation,
continuous progress, and timely arrival at the target. In
addition to dense exploration rewards and incremental
distance-based incentives, the agent receives a significant goal
reward upon successful arrival and is penalized for excessive
deliberation. At the end of each episode, an efficiency
bonus further encourages optimal route planning and swift
completion.

1) Distance-Based Reward: The distance reward
incentivizes progressive approach to the target:

rdist = wdist ·


d
(t−1)
min − dt

d0
, if dt < d

(t−1)
min

0, otherwise
(5)

where:

• dt = ∥p(t)
v −pt∥: Euclidean distance between the vehicle

position p
(t)
v and the target position pt at time t,

• d
(t)
min = min(d

(t−1)
min , dt): closest achieved distance up to

time t,
• d0 = ∥p(0)

v − pt∥: initial distance at episode start,
• wdist: distance reward scaling factor.

2) Exploration Reward: To encourage continual movement
and mitigate the sparse reward problem, we introduce a dense
exploration bonus:

r
(t)
explore = wexplore ·

∥p(t)
v − p

(t−1)
v ∥

dmax
(6)

where:

• p
(t)
v : vessel’s position in the horizontal plane (X/Z) at

time t,
• dmax: maximum possible target distance in the

environment,
• wexplore: exploration reward scaling factor.
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3) Goal Reward: Upon successfully reaching the target,
the agent receives a terminal reward:

rgoal = wgoal · Igoal (7)

where Igoal is 1 if the target is reached and 0 otherwise, and
wgoal sets the terminal reward magnitude.

4) Efficiency Bonus: At episode termination, an efficiency
bonus is awarded based on the agent’s path and time
performance:

reff = weff · ηpath · ηtime (8)

where:
• ηpath = ddirect

dactual
∈ [0, 1]: path efficiency (direct distance

divided by actual distance traveled),
• ηtime = 1− t

tmax
∈ [0, 1]: time efficiency (remaining time

as a fraction of maximum episode duration),
• weff: efficiency bonus weight.

Here ddirect is the straight-line Euclidean distance between start
and target. Since agents must maneuver around obstacles and
respect vessel dynamics, the actual path is always longer, so
ηpath < 1 in practice. This bonus encourages agents to find
efficient routes and complete tasks quickly.

5) Live Penalty and Collision: To discourage inefficient
behavior, the agent incurs penalties for time consumption and
unsafe navigation.

a) Live Penalty: A time-dependent penalty is applied at
every timestep to encourage faster task completion:

r
(t)
live = −wlive

tmax
(9)

where:
• wlive: Total penalty if the agent uses all tmax steps
• tmax: Maximum allowed steps in the episode

This ensures the cumulative live penalty equals −wlive
over a full-length episode. If the episode ends earlier, the
accumulated penalty is proportional to the steps used, so the
agent receives less than −wlive.

b) Collision Penalty: If a collision with an obstacle or
another vessel is detected, the agent immediately receives a
fixed penalty and the episode terminates:

rcollide = −wcollide · Icollide (10)

where Icollide is 1 if a collision occurs, and 0 otherwise, and
wcollide sets the terminal penalty magnitude. This terminal
penalty promotes cautious navigation and avoidance behavior.

These penalty components complement the sparse terminal
rewards and provide additional shaping signals, particularly
valuable during early training when successful episodes are
infrequent.

6) Reward Function Summary: The complete reward
function is composed of both sparse and dense components
that guide the agent’s learning process. Table III provides an
overview of each term and its purpose in the behavior shaping
strategy.

IV. RESULTS

This section presents an empirical evaluation of PPO and
its variants. Models were trained for 15 million steps using
an NVIDIA RTX 3080 GPU. We analyze both the learning
dynamics during training and the performance of the final
converged policies, which were evaluated over 100 distinct
episodes.

TABLE III: REWARD FUNCTION COMPONENTS

Component Description

rdist Delta distance to target reward
rexplore Exploration bonus (movement-based)
rgoal Goal reward upon success
reff Efficiency bonus (path + time)
rlive Step penalty to encourage faster completion
rcollide Terminal penalty applied upon collision

A. Training Dynamics and Convergence

Fig. 2 allows the comparison of the learning curves of
all four PPO variants. The results show distinct learning
behaviors. The PPO+CL agent (orange) demonstrates superior
sample efficiency, achieving over 80% success rate within
approximately 1 million steps, significantly faster than all
other variants. However, its performance plateaus and is
eventually surpassed by the baseline PPO, which achieves the
highest final success rate during training.

The PPO-LSTM agent (green) exhibits the slowest initial
learning, requiring nearly 2 million steps to reach a
competitive success rate. The PPO-LSTM+CL agent shows
moderate learning speeds, similar to the baseline PPO in
the initial phases. After approximately 4 million steps, all
algorithms converge to a similar performance band of 80-90%,
with the primary differences being in their final ranking and
stability.

Fig. 2: Success rate during training (mean of runs, smoothed).
PPO+CL shows the fastest initial convergence, but baseline
PPO achieves a higher final success rate.

To quantify performance differences at convergence, we
conducted independent-samples t-tests on the final 100
training records (last 15M steps). The results in Table IV
reveal: (1) Baseline PPO significantly outperformed all
enhanced variants (p < 0.05), with strong superiority over
PPO+CL (t = 4.906, p < 0.0001) and PPO-LSTM+CL
(t = 5.103, p < 0.0001); (2) Statistical analysis indicates
PPO-LSTM+CL improved over PPO-LSTM alone (t =
2.633, p = 0.0088), though both remained below baseline;
and (3) No significant difference existed between PPO+CL
and PPO-LSTM+CL (t = 0.613, p = 0.5405), indicating
CL provides similar benefits regardless of LSTM integration.
The convergence plot (Fig. 2) uses a smoothing factor 0.98
for visual clarity, which emphasizes long-term trends over
short-term variance captured in the statistical analysis.
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TABLE IV: STATISTICAL COMPARISON OF SUCCESS RATES

Comparison t-statistic p-value

PPO vs. PPO-LSTM 2.190 0.0290
PPO vs. PPO+CL 4.906 < 0.0001
PPO vs. PPO-LSTM+CL 5.103 < 0.0001
PPO+CL vs. PPO-LSTM -2.250 0.0249
PPO+CL vs. PPO-LSTM+CL 0.613 0.5405
PPO-LSTM vs. PPO-LSTM+CL 2.633 0.0088

All (Kruskal-Wallis H) 27.748 < 0.0001

B. Evaluation of Final Policies

To assess the robustness and generalization of the learned
policies, the final models were evaluated over 100 separate
episodes for each configuration. Table V presents these results.

TABLE V: SUCCESS RATE FROM 100-EPISODE EVALUATION

Configuration 1A-0O 3A-10O 5A-20O

PPO 100.0% 94.33% 86.79%
PPO + CL 100.0% 98.32% 89.66%
PPO-LSTM 100.0% 92.00% 79.96%
PPO-LSTM + CL 100.0% 91.33% 80.40%

The evaluation results largely align with the observations
from the training curves and statistical analyses. In
simpler scenarios (1A-0O, where ‘A’ denotes agents and
‘O’ denotes obstacles), all algorithms achieved perfect
success. As complexity increased, the performance of
PPO and PPO+CL remained higher than PPO-LSTM and
PPO-LSTM+CL. Specifically, PPO+CL showed very strong
performance, even surpassing baseline PPO in the 3A-10O
and 5A-20O configurations (98.32% vs. 94.33%, and 89.66%
vs. 86.79%, respectively). PPO-LSTM and PPO-LSTM+CL,
while showing moderate performance, consistently scored
lower than PPO and PPO+CL in complex settings. This
indicates that the addition of LSTM, despite its theoretical
benefits for partial observability, did not translate into superior
performance in these multi-agent environments under the
given training conditions.

Fig. 3 illustrates an alternative evaluation run demonstrating
the generalization capabilities of the trained agents. The
teal lines represent the trajectories of 10 USVs as they
navigate a 1 km × 2 km maritime environment, substantially
larger than the 300 m × 300 m training area. Red capsules
denote dynamic obstacles, while the central island acts as a
large static obstacle. The aircraft carrier in the background
serves as the mission target. Despite the increased scale
and complexity—featuring up to 60 obstacles—the agents
successfully coordinate to reach the target, highlighting the
robustness and adaptability of the learned policy beyond the
training distribution.

C. Scalability and Failure Analysis

To understand performance degradation, we analyzed the
scalability of the baseline PPO. Fig. 4 shows that success
rates decline as both agent count and obstacle density increase.
The sharpest performance drops occur in scenarios with more
than three agents. Fig. 5 reveals the cause: starting from 2
agents, ship-to-ship collisions already account for nearly 80%

Fig. 3: Agent trajectories (teal) for 10 USVs navigating a
1 km × 2 km environment with up to 60 obstacles (red) and
a central island, targeting the aircraft carrier.

of terminations, and they remain the dominant failure mode as
the number of agents increases. This indicates that multi-agent
coordination, not simple obstacle avoidance, is the primary
challenge to scalability.

Fig. 4: Success rate of the baseline PPO algorithm at 15M
steps across the agent-obstacle matrix.

Fig. 5: Breakdown of failure reasons for baseline PPO over
100 episodes in a 20-obstacle environment. Models were not
trained with 6 or more other agents.

D. Discussion

The results highlight a trade-off in applying DRL
enhancements. CL greatly improves sample efficiency,
valuable for resource-constrained projects. Our evaluation
shows PPO+CL generalized better than other variants,
achieving higher evaluation performance despite lower
training scores. CL thus acts as a regularizer, guiding agents
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to more robust policies beyond the training distribution. These
findings underscore the need for a distinct evaluation phase
to assess true policy generalization.

V. DEPLOYMENT CHALLENGES AND STRATEGIC
IMPLICATIONS

The strategic value of autonomous USV swarms extends
beyond technological advancement — it is a cornerstone for
defending Brazil’s “Amazônia Azul.” Our 7,400-kilometer
coastline demands solutions that operate independently across
varied maritime conditions to secure sea lanes, protect
resources, and deter threats.

a) Current Framework: Our simulation environment
demonstrates robust policy learning for multi-agent
coordination in complex scenarios, contributing to enhanced
responsiveness against potential threats.

b) Deployment Roadmap: Bridging simulation and
reality will require:

• Output Standardization: Agent outputs must be
converted to maritime standards. We propose mapping
heading control where 1 → 0° (true north) and -1 →
360°, with similar normalization for acceleration.

• System Integration: Converting outputs to conventional
headings is essential for future naval integration.
This standardization enables compatibility with the
National Marine Electronics Association (NMEA) 0183
protocol, specifically the HDG (Heading) and HTD (True
Heading) sentences, via a conversion layer, ensuring
interoperability and rapid integration with command and
control systems.

• Environmental Fidelity: Future work will prioritize a
digital twin calibrated with Navy vessel data and domain
randomization for operational sea states.
c) Validation Pathway: Before deployment, all systems

will undergo hardware-in-the-loop testing, resilience
verification across diverse zones, and incremental trials on
prototypes and fleet vessels.

This phased approach ensures technological advancement
aligned with national defense priorities, paving the way for a
new paradigm in South Atlantic maritime security.

VI. CONCLUSIONS AND FUTURE WORK

This research establishes a foundation for autonomous
maritime operations serving Brazil’s national security
interests. Through comprehensive evaluation of PPO variants
across multi-agent scenarios, we demonstrate the complex
trade-offs between training efficiency and operational
performance crucial for reliable defense systems.

Our findings reveal that while CL accelerates initial
training — achieving 80% success rates within 1 million
steps — baseline PPO demonstrates superior asymptotic
performance. However, PPO+CL exhibits the strongest
generalization capabilities, achieving 89.66% success in
challenging 5-agent/20-obstacle configurations compared to
86.79% for baseline PPO. These results directly inform
training methodology selection for operational USV systems.

The scalability analysis identified multi-agent coordination
as the primary challenge, with ship-to-ship collisions
accounting for over 80% of failures in dense formations.
This emphasizes the critical importance of robust coordination

protocols for swarm operations — capabilities essential for
defending sea lanes and distributed maritime missions.

Looking ahead, our research focuses on expanding
framework capabilities to include dynamic targets,
communication constraints, and adversarial scenarios
that mirror realistic threat environments. The demonstrated
scalability supporting up to 10 agents provides a pathway
for larger swarm studies relevant to fleet-scale operations.
Complete integration with maritime communication standards
ensures deployment aboard existing and future Brazilian
Navy platforms without extensive hardware modifications.

By advancing autonomous maritime technologies, the
Brazilian Navy reinforces its commitment to technological
sovereignty. This work positions Brazil as a leader in maritime
autonomy while ensuring naval forces remain prepared for
warfare challenges. These capabilities serve national security
objectives and contribute to Brazil’s emergence as a global
leader in autonomous maritime systems.

The path from simulation to operational deployment
requires sustained commitment to excellence, but the strategic
advantages for defending Brazil’s Maritime Domain are vast.
As we advance these technologies, we honor our maritime
heritage while securing Brazil’s future on the seas.
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